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[i1] The rapid loss of radiation belt eleetrons in the main
phase of geomagnetic storms is believed to be aided by
EMIC waves, and is usually analyzed with quasi-linear
theory. However, even moderate EMIC wave intensities
casily eause resonant electrons to respond nonlinearly, with
drastically different results. We map out the region of
nonlinear behavior with a single parameter, and show that
both the direction and magnitude of scattering can bc
estimatcd by analytical expressions. Thc nonlinear
interactions typically lead to adveetion toward large pitch
angles, rather than diffusion toward the loss eone. This is
expeeted to reduce the overall loss rate and greatly affect the
distribution of trapped clectrons. Citation: Albert, J. M., and
J. Bortnik (2009), Nonlinear interaction of radiation beli elecirons
with clectromagnetic ton cyclotron waves, Geophys. Res. Lett., 36,
112110, doi:10.1029/2009GL0O38904.

1. Introduction

[2] Strong eleetromagnetie ion eyelotron (EMIC) waves,
with typical intensities of ~1—10 nT, are commonly present
in the outer radiation belts [Meredith et al., 2003; Fraser et
al., 2006]. They are cxeited by unstable distributions of ring
current ions, and can scatter both ring current and radiation
belt ions into the loss cone. They may also strongly seatter
radiation belt electrons, especially near the plasmapause and
in high density plumes [Thorne et al., 2005, 2006; Shprits et
al., 2008]. Such scattering has mostly been modeled as
quasi-linear diffusion [Lyons, 1974, Summers and Thorne,
2003; Gamayunov and Khazanov, 2007; Jordanova et al.,
1996, 2008; Mivoshi et al., 2008], which indicates that
EMIC waves with magnetic field amplitudes of 1 nT, in
conjunction with whistler mode hiss and chorus, give decay
time scales for 1 MeV electrons of less than one day [Albert,
2003; Li et al, 2007]. Similar calculations with strongcr
EMIC waves can reaeh the strong diffusion limit, where
particles scattcr into the loss cone faster than they can be
removed by the atmosphere [Shprits et al., 2009]. However,
such strong amplitudes raise doubts about the validity of the
quasi-linear framework, and a nonlinear treatment seems
called for, as noted by Millan and Thorne [2007]. Suech
analysis for test particles has previously been developed and
applied to large amplitude whistler mode ehorus [e.g.,
Nunn, 1974; Albert, 2002; Omura et al., 2008; Bortik et
al., 2008]. Here, we use a similar approach to demonstrate
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the potentially nonlinear eharacter of eleetron interaetions
with EMIC waves.

2. Inhomogeneity Parameter

[3] For field-aligned EMIC waves, the cyclotron reso-
nanee eondition for electrons is

w—hkvy = -Q /v (1)

where §2, = ¢B/mc, m is the eleetron rest mass, and ¢ is the
clectron eharge (in absolute value). Resonances involving
multiples of the cyclotron frequency do not play a role for
field-aligned waves. Assuming the wave is gencrated near
the equator and propagates away from it [e.g., Fraser et al.,
1996], the electron must be “‘co-streaming,” i.c., direeted
toward high latitude. (This is opposite to the usual
requircment for resonance with ficld-aligned whistler mode
waves.)

[4] The dynamies of resonant wave-partiele interactions
have been treated by many authors [e.g., Nunn, 1974; Inan
et al., 1978). Albert [1993, 2000] derived a *“1 i dimen-
sional” Hamiltonian for the normalized first adiabatic
invarant / = w(p,/mc)*/290,, the wave-particle phase &,
and distanee s along a field line, of the form

K(1.€.5) = Ko(1,8) + K1 (I.5) sin &, (2)
where Ky describes adiabatic motion along a field line and

K captures the effect of the resonant wave. With field-
aligned wave propagation, they take the form

ke :
Ko =— (1 — k) + yf (1 —p)P=1 = 2000 fu

3
eB,./me (3)

ke

K = tan a.
where « is the local particle pitch angle and /; is a constant.
[s] For fixed s the Hamiltonian is analogous to that of a
plane pendulum, whose phase portrait features two classes of
periodic trajectories, with a separatrix between them. The
frequeney of small amplitude oseillations is (K PKYOry?,
and the island width is [4K,(PK/dI)]'"?. Albert [1993]
considered the timescales for particle motion within a frozen
phase portrait and for motion of the island itself, finding that
the particle behavior was detcrmined by their ratio,

K or il
T KKy /dsol)

For [R| > 1, “lincar” motion is expected, with an
effeetively random value of the phase at resonance, leading
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Inhomogeneity parameter R versus equatorial pitch angle and energy, for a model of 2 nT EMIC waves in a high

density plume at L = 4. The full equation (5) was used for the left-hand plot, and the approximate equation (7) was used on
the night. The triangles indicate the particles simulated numerically. Nonlinear interactions are expeeted for R < 1.

to diffusion in /, while |R| < 1 leads to essentially nonlinear
motion, with phase bunching (with or without phasc
trapping), and deterministic changes in /. R represents a
competition between the strength of the wave, in K, and the
inhomogeneity of the background magnetic field (and
plasma properties), which enters through the derivative
with respeet to s (effectively, latitude A).

[6] Omura et al. [2008] recently presented a related
analysis for field-aligned whistler-mode chorus waves,
working directly with the resonance-averaged equations of
motion, and obtained a related nonlinear oseillator equation
with the same properties. Repeating their derivation for
arbitrary (but field-aligned) waves yields an “inhomogencity
parameter”™ which coincides exactly with R, and can be
written explieitly as

v.
c]

LA
Mo n, 2

2

cvaluated at resonance. Here 4t is the rcfractlvc index, kc/w.
[7] For parallel-propagating EMIC waves, i is given by
the Stix L parameter [Stix, 1962], which is conveniently

written as
{ + Z } (6)

where M is the electron-to-proton mass ratio m/m,,, i indexes
the ion species, 3; = m;/m,, = - nin,, and Z; is the charge of
ion /. Quasineutrality requ1res >.Za; = 1. EMIC waves
only propagate where x> > 0, which oceurs in frequency
bands bounded below by cutoffs and above by resonances at
the ion eyclotron frequencies.

[8] We take the ions to be H", He", and O, so that 3, =
1, Bue = 4, Bo = 16, with all Z; = 1. Typical storm-time
values of the ion coneentrations are 7;; = 0.77, 1y, = 0.20,
1o = 0.03 [Jordanova et al., 2008]. The value of u in
equation (6) will be dominated by the term corresponding to

-B pu
Byl —1lvyw

¢ cC

R =

2 71 3(u2)

(5)

W7,

w?

W w

VA 1

Bl B o

2

the appropriate ion band. Making this approximation, using
a small-latitude approximation of the dipole magnetic field,
and ignoring density variation in cquation (5) yield the
estimate

-9\ mc ¢ p cos’a I

= _— 7
2L B, R. mc sina 1 —w/Q 0

From now on, it will be understood that “R™ refers to |R]|.

[¢] Figure 1 shows R as a function of energy and
equatorial pitch angle «q for field-aligned, 2 nT EMIC
waves in the helium band, evaluated in a high density
plume at L = 4, with /€0, = 15. The frequency w/2r is
taken to be about 1.84 Hz, so that w/€); = 0.96 at the equator.
Such a large ratio is nceessary to bring the minimum
resonant encrgy down to about 1 MeV [Summers and
Thorne, 2003; Albert, 2003]. Equations (5) and (7) give
very similar results for R. Near the loss cone, the inter-
actions are cxpected to be linear (that is, diffusive, as
discussed below). However, for a wide range of pitch angle
and energy values, the interactions are expected to be
nonlinear, so that quasi-linear diffusion will not be a valid
dcescription.

3. Equations of Motion and Analytical Estimates

[10] To test these ideas, we follow particles numeriecally,
using the gyroresonance-averaged equations of motion
following Chang and Inan [1983]. These equations take
the form

dy _eBup. . . P OB
dt ¢ omy 2myB s
oo _ B (W _ P14 PLPUDB
dt c \k my 2m73 s (8)
do kp (OR eB P\ cos ¢
sl 4 el || O =l
dt mvy ¥ c k my/) pi
ds _p
dt~ mn
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Figure 2. Trajectories of 2 MeV eleetrons with ag = 15°, interacting with 2 nT EMIC waves in a high density plume. Even
for these large amplitude waves, the interaction is fairly linear, leading to nearly symmetric seattering in g and in E.

In a dipole field, s is easily transformed to latitude A. Both
the wave frequency w and magnetic field strength B, as
well as the background plasma density, are trcated as
constant. The particles were not allowed to reach the
location of the crossover frequency, where the Stix
parameter D = 0, and the wave can switch from left hand
to right hand circular polarization [Stix, 1962]. The wave-
particle phase ¢ differs from £ in equation (2) only by sign
and phase conventions.

f11] The Hamiltonian analysis of Albert [1993] yiclds
analytical estimates of the net, nonadiabatic change in / due
to either linear or nonlinear resonant interactions. These are:

Aly, = ~K al & R>1
lin = - 1\ WCOSE. > 1.
e 9)
Al 8 /IL R<1 v
TRV K ar| :

Here & is related to the value of & evaluated right at
resonance, and is cffectively random. Thus in the lincar
regime, / suffers a random walk with zero mean, or diffuses,
while in the nonlinear regime the resonant value of & is well
defined and [/ experiences systematic drift, or adveection.
Corresponding changes in energy and «y are [Albert, 2000]

Dyt 0 Sl SE_ iy o)

7. S
(p/mc)” sin ag cos ag mc

where €2, is the equatorial value of .. Since w < §2,, pitch
angle changes will be much larger than normalized energy
changes.

4. Results

[12] First, the trajectories of 24 particles interacting with
a small amplitude wave, B, = 5 pT, were calculated
according to equation (8). The particles were started at the
equator with £ =2 MeV, ag = 15°, and a uniform spread in
initial phase, ¢y. For this arrangement, R at the expected
resonanee location is nearly 1000. After passing through the

resonance, both ag and E are sharply scattered. The dis-
tributions of A«ay and AE, though not shown, are symmet-
ric about zero and depend sinusoidally on the initial phases,
which should be similar to the phases just before the
resonant interactions. Furthermore, the scattering ampli-
tudes agree quite well with the prediction Afy,.

[13] Figure 2 shows a similar simulation with 8, =2 nT,
which gives R = 2.4. This distribution of changes is also
fairly sinusoidal, though not perfectly so, and the ampli-
tudes of the changes are well predieted by Alj,,, shown as
the double-arrowed line. The maximum change in Aqyq is
about 10°, which is nearly enough to move the particles into
the loss cone in one bounce. The pitech angle diffusion
coefficient, ((Aag))/7, = 3 x 10° day ', is in reasonable
agreement with caleulations based on broadband quasi-
linear theory applied to similar models of EMIC waves at
L = 4.5 [Li et al., 2007; Albert, 2008]. The bottom two
panels show the expeeted, nearly sinsusoidal dependence on
initial phase, as well as mean changes (dashed lines) and
mean changes plus or minus one standard deviation (dotted
lines).

[14] In Figure 3, the initial pitch angle of the 2 MeV
particles is changed to ao = 45°, for which R = 0.54, a
moderately nonlinear value. In fact, the distribution of
changes is very different from above, with most particles
tracing very similar paths. This is due to the underlying
“bunching™ of wave-particle phases as the particles
encounter and circumnavigate the separatrix between trapped
and untrapped trajectories (sec, e.g., Nunn [1974], Albert
[1993, 2000], Omura et al. [2008] for details). Some paths
are exceptions, reflecting the faet that R 1s not very much
less than 1. Nevertheless, the predicted changes based on
Alyy, indicated by the plus symbols, give good estimates of
the maximum, and most common, values. Repeated inter-
actions would cause the particle distributions to drift, not
diffuse, in pitch angle and cnergy; the cumulative changes
would grow proportionally to time, not as 1", Also note
that the typical change in « is positive, away from the loss
cone. This is expected to cause lower phase space density at
the relevant pitch angles, and lower overall loss rates, than
estimates based on pure diffusion.
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Bw(pT)=2000.0 E(MeV)=2.0 PA=45.0
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Figure 3. Trajectories of 2 MeV electrons with v = 45°, interacting with 2 nT EMIC waves in a high density plumc. For
these particles, the interaction is nonlinear, leading to phase bunching with systcmatic increases in g and dccreases in E.

[15s] None of the particles in Figure 3 exhibit phase
trapping, whereby particles cross the separatrix and spcnd
many phase oscillations within it. This is not surprising
since the particles are moving away from the equator, as
required for resonance with the EMIC waves, and so
expericnce increasing magnetic field inhomogencity. Even
if R <1 at resonance, R will be increasing, which is not
conducive to trapping [Albert, 2000]. On the other hand,
particles may start out inside the separatrix. Figure 4 shows
2 MeV particles starting with «g = 55° at the equator. The
linear resonance condition, equation (1), is satisfied at A =
1.7°, where R = 0.2. About half the particles behave non-
linearly in accordance with Aly;, as shown by the plus
marks. However, almost half the particles experience even
larger, and oppositely signed changes, which develop over a
sustained interval of nonadiabatic motion, as is characteris-
tic of phase trapping. Evidently the initial conditions are
near enough to resonance that some particles complete
sevcral phase oscillations before becoming nonresonant.
Detailed examination of the trajectories verifies that for

the trapped particles, ¢ oscillates in a limited range starting
at 1 = 0. Physically, this would occur if B,,, which has been
held constant, grew rapidly to “envelop” regions of phase
spacc containing nearly resonant particles.

5. Summary

[16] We have dcmonstrated that the cyclotron rcsonant
interaction of relativistic electrons with field-aligned EMIC
waves can be highly nonlinear. Regions of expected non-
linear behavior were mapped out with the parametcr R,
using a rcalistic magnetic field amplitude of 2 nT. More-
over, we have shown that previously developed theoretical
cxpressions for the expected pitch angle and energy changes
give good estimates of the behavior scen in numerical
simulation of the particle motion. Phase bunching without
trapping, the more commonly expected version of nonlinear
behavior, leads to rapid pitch angle increases, away from the
loss cone, with small changes in energy. In combination
with diffusion, this could lead to major, complex effects on

Bw(pT)=2000.0 E(MeV)=2.0 PA=55.0

65

60 *
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o —

300
200
100

0
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Figure 4. Trajectories of 2 MeV electrons with ag = 55°, interacting with 2 nT EMIC waves in a high density plume. For
these particles, the interaction is nonlinear and some particles are initially phase trapped, giving both systematic increases
and sustained decreases in «y, and oppositely directed changes in E.
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both the loss rate and the trapped particle distribution. Since
EMIC waves are believed to play a major role in the loss of
radiation belt electrons during storms, such behavior should
be accounted for in future models. One approach would be
to use the analytical expressions in a combined diffusion-
adveetion formulation.

[17] Acknowledgments. This work was supported by lhe Space
Vehicles Directorate of the Air Force Rescarch Laboratory. J.B. gralefully
acknowledges support from NASA grant NNX08A1135G.
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